Lecture topics

School length	32 hours
1. Electroweak interactions on the nucleon	3 hours
Electromagnetic interactions; V-A and current-current theories of weak interactions; C PCAC; single-nucleon matrix elements of the electroweak current and associated form parametrizations and sources of experimental information about electromagnetic and w factors.	VC and factors; yeak form
2. Strong and electroweak interactions in nuclei	4 hours
Two- and three-nucleon pion exchange interactions; realistic models of two- and three- interactions; short-range structure of nuclei and nuclear correlations; momentum distrib nucleons and nucleon pairs in nuclei; spectral functions; two- and many-body componen nuclear electroweak current.	nucleon putions of ents in the
3. The nuclear physics of electron and neutrino scattering in nuclei in the quasielastic regime and beyond	9 hours
3.1 Approximate methods for nuclei (I)	3 hours
Shell model; relativistic Fermi gas model (success and limitations); relativistic mean fighter Phenomenological description of inclusive neutrino scattering based on scaling and sup scaling.	eld. ber-
3.2 Approximate methods for nuclei (II)	3 hours
The polarization propagator; RPA approach; RPA equations; many-body diagrams; me exchange currents and 2p2h terms in general.	eson
3.3 Ab initio methods for nuclei	3 hours
A selection from: variational and Green's function Monte Carlo methods, no-core shell coupled-cluster method, auxiliary-field Monte Carlo methods. Ab initio descriptions o scattering: i) integral transform methods (Euclidean and Lorentz transform techniques) consistent Green's function methods.	model, f inclusive , ii) self-
4. Pion production	3 hours
QCD (chiral symmetry) constraints to pion pion production at threshold. The role of th	e

Delta(1232) resonance in pion photon and electroproduction. Electroweak excitation of baryon resonances. Transition form factors. Unitarization. Watson theorem. Single pion production, diffractive off a nucleon and coherent off a nucleus. Other meson production channels (kaon, 2 pions, associated strangeness, etc).

5.	Descrip	ption	of exc	lusive	channels	and	final	state	interac	tions		3 h	ours
\sim .	Deserr	puon	or ene		channels	unu	IIIIui	Stute	menue	uono	~	, II	loui

Transport and cascade approaches to the description of the exclusive final state; pions in nuclei: propagation and absorption; formation time; baryon resonances in the nuclear medium. Nucleon propagation in nuclei. Entanglement between quasielastic and inelastic processes.

6. Inclusive electron and neutrino scattering in the deep inelastic regime 3 hours

General analysis of deep inelastic scattering (DIS); Bjorken scaling; quark-parton model; DGLAP equations; nuclear effects in DIS; shadowing; extraction of parton distribution functions; duality.

7. Impact of uncertainties in neutrino cross sections 3 hours

Impact of uncertainties in neutrino cross sections on the determination of oscillation parameters; potential for CP violation discovery; role of the near detector. Experimental example: the T2K analysis.

8. Selected experimental illustrations 4 hours Experimental overviews complementing and supporting the theory lectures.